关于stable_partition的问题?
题目:假设一整型数组存在若干正数和负数优艾设计网_设计百科,现在通过某种算法使得该数组的所有负数在正数的左边,且保证负数和正数间元素相对位置不变。时空复杂度要求分别为:o(n)和o(1)。
大概就是要求stable_partition的实现,然而stl中stable_partition实现利用了额外的空间,不符合题目要求呢。
正常会有两种实现方法:
(一)用一个游标,从前往后遍历,第一次遇到负数则继续,遇到正数则记录并接着走,再遇到负数则与刚记录的正数互换,并将记录后移一位,这样遍历完成的时候移位也完成了。
(二)用两个游标,一个位于数组头,往后遍历,一个位于数组尾,往前遍历。前面的遇到负数后面的遇到正数组则继续;前面的遇到正数后面的遇到负数则互换,直到后面游标小于前面游标算完成。
但是都不满足稳定性的要求,毕竟快排是不稳定的排序。
那这题应该怎么做呢。再花o(n)时间,把后半部分不稳定的地方给找到再rotate??感觉好蛋疼。
360U3148260177 2022-07-19 09:27 优艾设计网_PS百科
假设数组为a, 1.先找到第一个整数,记好位置为i,然后找到后面遇到的第一个负数,位置为j, 保存a[j]到临时变量里,将a[i, j-1]区间的数拷贝给a[i+1, j], 临时变量赋值给a[i],2.位置i存放的是找到的负数3.继续从j+1开始,找到下一个负数,位置为k, a[k]保存到临时变量, 拷贝a[i+1, k-1] 到 a[i+2, k], 临时变量赋值给a[i+1]4.此时i+1存放的是刚找到的负数5.继续前面的过程
这大学该不该上66 优艾设计网_设计圈 2022-07-19 09:29
不要做交换,做拷贝就可以了. 因为要求时间复杂度为o(n).
M优艾设计网_平面设计25****202 2022-07-19 09:44
例子:初始 [1, -1, 2, -2, 3, 4] 第一次拷贝,-1放在位置0 [-1, 1, 2, -2, 3, 4]第二次拷贝,-2放在位置1 [-1, -2, 1, 2, 3, 4]后面没找到其它负数,就结束了.
爱电影爱分享 2022-07-19 09:45 优艾设计网_设计客
假设负数是o,正数是x。从前往后遍历,每次找到xx..xoo..o的子串,进行循环左移变为oo..oxx..x;下一次从上一次的x开始计算新的xx..xoo..o子串模式来转换。每个字符最多被操作两次,因此复杂度是O(N)。剩下的就是如果将xx..xoo..o在O(L)的复杂度内完成oo.oxx..x的变化。假设模式串为x1x2x3x4o1o2o3, 范围内两次倒置,第一次将两个子串分别反转,得到x4x3x2x1o3o2o1,第二次整体倒置得到o1o2o3x1x2x3x4。完成。一共是2*L次。综上,时间复杂度O(N),每个元素最多移动了4次.空间复杂度O(1)
精彩评论